
1. The interference pattern of two identical slits separated by a distance d = 0.25 mm is observed on a screen at a distance L of 0.32 m from the plane of the slits. The slits are illuminated by monochromatic light of wavelength 589.3 nm travelling perpendicular to the plane of the slits. Bright bands are observed on each side of the central maximum P.

a. Calculate the distance between adjacent maxima of the interference pattern that would be observed at the screen

<u> </u>	589.3×10-9×0.32	= 7.54 × 10.4 m	
A	2.5×10-4		

[2 marks]

b. Point P is the same distance from both light sources. Comment on the intensity of light that occurs at point P and explain why this is so.

Central maxima (P) has the greatest intensity of light Intensity of light decreases with distance. P is the bright fringe with minimum total distance from the light source.	Entensity of light documents with link as a side of	
tringe with minimum total distance from the light source.	tringe with minimum total distance from the light source	C L
		<u>. </u>

[2 marks]

c. In a similar arrangement of apparatus, an experiment was conducted for which $L=1.0~\mathrm{m}$ and $d=0.10~\mathrm{cm}$, the bright fringes were 0.5 mm apart. What wavelength of light was being used?

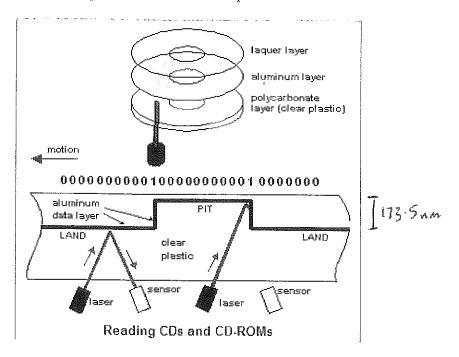
$\Delta q = \lambda L$	dag -)	1×10-3 × 5×10-4
d	L	- Martin and Control of the State of the Sta
	= QAVARAGE	k3 = 5 × 10-7
		= 500 nm
	As.	

đ.	The colours seen in the two slit interference pattern when white light is the source are
	sometimes mistaken for the spectra of visible light also referred to as the rainbow colours.
	Explain why this is not possible with a two slit interference pattern.

larger	wavel	engths	of	light	diffract	More	than	small	ev
ones.	The_	<u>waxima</u>	d	the	different	wave	lengths	oli	light
will Y	heretos	re beg	in t	0 0	verlan		υ.		J
		J.			8"				
								Γ2	markel

- 2. White light is incident on a diffraction grating with 300 lines per mm. A third order spectrum is observed to overlap a second order spectrum on a screen placed at a distance of 1.2 m from the grating. Given that the wavelength of a third order colour is 450 nm,
 - a. calculate the wavelength of the light for the second order that overlaps it.

300 lines/am - d = 1300000 = 3	·33×10	
M=3		
N=95 × 10-7		X= dsind
		NV - Proposition and Proposit
Sind=M1 = 3x4.5x10-7	: 0 = 23 · 89"	λ = 3.33×10 ⁻⁶ × sin 23.99
d 3.33×10-6		carries and property and the second s
	λ=6-75×1	5-7 = 675 ner [2 marks]


b. determine the angle at which the two wavelengths of light overlap on the screen.

[3 marks]

如在街

對他

5. The diagram Reading CD's and CD ROMS provided shows the surface of a CD with binary code (000100100) for the pattern of a series of bumps.

a) What is occurring where the binary code 1 is assigned?

Change	Ivom	pit	to	land.	[1 mark
L. P		Į.			

b) Explain how a laser light wavelength = 694 nm is used to read the binary code 1 and binary code 0. Add quantitative information onto the diagram.

The height of the pit is 173.5 nm, which is
In the wovelength of the laser used.
When the loser hits the boundary between the
land + pit there is a path difference between
them.
The p.d. is twice the height of the pit
ie $2 \times \frac{1}{2}\lambda = \frac{1}{2}$
As the p.d. is 1/2 destructive interference
occurs and the reading at the sensor will
change.

[3 marks]

c) Describe with a diagram how a	laser detects it is off	track when reading the CD.
----------------------------------	-------------------------	----------------------------

readin laser	1 o-trackin	g laser		
VIII	• 1			
0	Pit			

The luger beam is split via a diffraction go	rating.
The central beam reads the bumps/pits	- I
The two side beams travel between the	pall
of bumps/pits.	
If either records a change in intensity	due to
being of course the laser is redirected to	11-5
proper position	

[4 marks]

- 6. In a laboratory experiment, Ultra Violet light with a photon energy E of 4.6 eV is incident on a metal with a known work function W of 1.8 eV.
 - metal with a known work function W of 1.8 eV. a. Calculate the threshold frequency f_o for this metal.

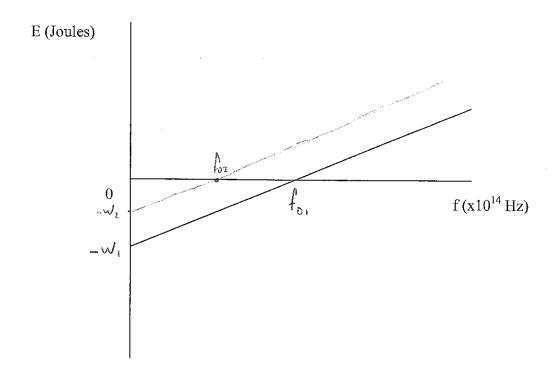
·	

[2 marks]

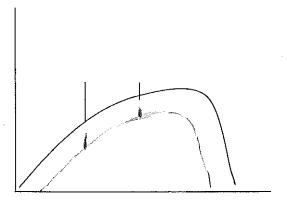
b. Determine the stopping voltage V_s for the photoelectrons released from the metal.

Lmax = Va q	2.8 x 1.6 x 10 19 V5
	1.6×10-19
C=4.6-1.8eV	V3 = 2·8

c. Calculate the frequency f of the incident light.


f= E = 4	+ 1 6 , 1 2 10 19			
	6-63 × 10-34	No.	W-9444	· · · · · · · · · · · · · · · · · · ·
			, , , , , , , , , , , , , , , , , , ,	*****

[2 marks]


- d. A range of photon energies were used to plot a graph for energy against frequency for the metal and a line of best fit was drawn as shown.
 - i) Label the work function W and the threshold frequency f_o for the metal.

[2 marks]

ii) Sketch a line graph on the same axes for a metal with a smaller work function.

Intensity

Frequency (Hz)

a. Explain the continuous range of frequencies and the sharp peaks in the spectrum of x-rays.

When ele		hit th	c anode	They	ave	decel	levated	64
the ele	dric 1	rield.					21.4	
Fach e	ectron	will	oe dece	leaded	ba	a di	Herent	amount
and he	ence u	ull have	differe	ut anc	iunks	of en	erqu.	
		lectrons	have	diflever	I am	ounts	of ene	vau
	The state of the s		100					رز
The ph	chows	produced	will	have	a van	rae of	reque	ncies
		Ü				(E=		
	<u></u>						/	
							[4]	marks]

The accelerating voltage was reduced with all other factors remaining constant. On the axes system shown above, sketch the graph that would result from the reduction.

[2 marks]

Determine the minimum accelerating voltage for an electron to produce an x-ray photon of wavelength 2.160 x10⁻¹¹.

[3 marks]

57-5 EV

57 SS2 V

It is proposed to send a beam of electrons travelling at a speed of 4.0 x 10^6 ms⁻¹ through a crystal with the spacing between the atoms being $d = 3.0 \times 10^{-10}$ m. 8. a. Find the wavelength of the electrons. P=mV ΜV [3 mark] b. Determine the first order angle of diffraction for the electron beam. 1 5120 = mx [2 marks] c. Explain why there is only one possible order for the beam of electrons and crystal arrangement described above. [2 marks] d. Explain why electron microscopes achieve a much higher resolution than optical microscopes.

smaller wavelength = smeller resolution